Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Sub-gram flying robots have transformative potential in applications from search and rescue to precision agriculture to environmental monitoring. However, a key gap in achieving autonomous flight for these applications is the low lift to weight ratio of flapping wing and quadrotor designs around 1 g or less. To close this gap, we propose a helictoper-style design that minimizes size and weight by leveraging the high lift, reliability, and low-voltage of sub-gram motors. We take an important step to enable this goal by designing a light-weight, micfrofabricated flybar mechanism to passively stabilize such a robot. Our 48 mg flybar is folded from a flat carbon fiber laminate into a 3D mechanism that couples tilting of the flybar to a change in the angle of attack of the rotors. Our design uses flexure joints instead of ball-in-socket joints common in larger flybars. To expedite the design exploration and optimization of a microfabricated flat-folded flybar, we develop a novel user-in-the-loop bi-level optimization workflow that combines Bayesian optimization design tools and expert feedback. We develop four template designs and use this method to achieve a peak damping ratio of 0.528, an 18.9x improvement from our initial design. Compared to a flybar-less rotor with a near 0 damping ratio, our flybar-rotor mechanism maintains a stable roll and pitch with relative deviations < 1°. Our results show that, if combined with a counter-torque mechanism such as a tail rotor, our miniaturized flybar could mechanically provide attitude stability for a sub-gram helicopter.more » « less
- 
            Using wind to disperse microfliers that fall like seeds and leaves can help automate large-scale sensor deployments. Here, we present battery-free microfliers that can change shape in mid-air to vary their dispersal distance. We designed origami microfliers using bistable leaf-out structures and uncovered an important property: A simple change in the shape of these origami structures causes two dramatically different falling behaviors. When unfolded and flat, the microfliers exhibit a tumbling behavior that increases lateral displacement in the wind. When folded inward, their orientation is stabilized, resulting in a downward descent that is less influenced by wind. To electronically transition between these two shapes, we designed a low-power electromagnetic actuator that produces peak forces of up to 200 millinewtons within 25 milliseconds while powered by solar cells. We fabricated a circuit directly on the folded origami structure that includes a programmable microcontroller, a Bluetooth radio, a solar power–harvesting circuit, a pressure sensor to estimate altitude, and a temperature sensor. Outdoor evaluations show that our 414-milligram origami microfliers were able to electronically change their shape mid-air, travel up to 98 meters in a light breeze, and wirelessly transmit data via Bluetooth up to 60 meters away, using only power collected from the sun.more » « less
- 
            Molecular-level understanding of nanomaterial interactions with bacterial cell surfaces can facilitate design of antimicrobial and antifouling surfaces and inform assessment of potential consequences of nanomaterial release into the environment. Here, we investigate the interaction of cationic nanoparticles with the main surface components of Gram-positive bacteria: peptidoglycan and teichoic acids. We employed intact cells and isolated cell walls from wild type Bacillus subtilis and two mutant strains differing in wall teichoic acid composition to investigate interaction with gold nanoparticles functionalized with cationic, branched polyethylenimine. We quantified nanoparticle association with intact cells by flow cytometry and determined sites of interaction by solid-state 31 P- and 13 C-NMR spectroscopy. We find that wall teichoic acid structure and composition were important determinants for the extent of interaction with cationic gold nanoparticles. The nanoparticles interacted more with wall teichoic acids from the wild type and mutant lacking glucose in its wall teichoic acids than those from the mutant having wall teichoic acids lacking alanine and exhibiting more restricted molecular motion. Our experimental evidence supports the interpretation that electrostatic forces contributed to nanoparticle–cell interactions and that the accessibility of negatively charged moieties in teichoic acid chains influences the degree of interaction. The approaches employed in this study can be applied to engineered nanomaterials differing in core composition, shape, or surface functional groups as well as to other types of bacteria to elucidate the influence of nanoparticle and cell surface properties on interactions with Gram-positive bacteria.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
